Thanks for the links, they're very interesting!
I've already learned something here as I can see two lines across the diamondtron tube in this monitor that I've almost finished restoring
and from this text I now understand why they're there and that they're not a defect:
So What Does It Mean to Have a Trinitron CRT?
Trinitron is a CRT technology developed by Sony. The patent has recently expired and therefore other manufacturers are free to offer similar CRTs. The CRT uses a set of fine vertical wires called an aperture grill instead of a steel shadow mask to separate the R, G, and B electron beams and force them to strike only the appropriate colored phosphors. This in conjunction with an in-line set of electron guns is supposed to provide a brighter image with simpler convergence and purity adjustments. It should be brighter because the percentage of open space of the aperture grill is higher then that of a shadow mask. Other adjustments should be less critical in the vertical direction. In addition, since there is no imposed structure in the vertical direction, undesirable moire patterns caused by scan line pitch compared with the shadow mask dot pitch should be eliminated.
You can recognize a Trinitron tube by the fact that the picture is made up of fine vertical stripes of red, green, and blue rather than dots or slots. The shadow mask in all other kinds of common CRTs are made up of either dots (nearly all good non-Trinitron computer monitors) or slots (many television sets). The Trinitron equivalent is called an aperture grill and is made of around a thousand vertical wires under tension a fraction of an inch behind the glass faceplate with its phosphor stripes.
Since the aperture grill wires run the full height of the tube, there are 1 or 2 stabilizing wires to minimize vibration and distortion of the aperture grill. These may be seen by looking closely 1/3 and/or 2/3 of the way down the tube. The larger size tubes will have 2 while those under 17 inch (I think) will only have a single wire. Many have complained about these or asked if they are defects - no they are apparently needed. You can be sure that Sony would have eliminated them if it were possible.
Another noticeable characteristic of Trinitrons is the nearly cylindrical faceplate. The radius in the vertical direction is very large compared to the horizontal. This is both a requirement and a feature. Since the aperture grill wires are under tension, they cannot follow the curve of the glass as a normal shadow mask may. Therefore, the glass must be flat or nearly flat in the vertical direction. As a selling point, this is also an attractive shape.
In the final analysis, the ultimate image quality on a monitor depends as much on other factors as on the CRT. There are many fine monitors that do not use Trinitrons as well as many not-so-great monitors which do use Trinitron tubes.
Why are There Fine Lines Across My Trinitron Monitor or TV?
These are not a defect - they are a 'feature'. :-)
All Trinitron (or clone) CRTs - tubes that use an aperture grille - require 1, 2, or 3 very fine wires across the screen to stabilize the array of vertical wires in the aperture grille. Without these, the display would be very sensitive to any shock or vibration and result in visible shimmering or rippling. (In fact, even with these stabilizing wires, you can usually see this shimmering if you whack a Trinitron monitor.) The lines you see are the shadows cast by these fine wires.
The number of wires depends on the size of the screen. Below 15" there is usually a single wire; between 15" and 21" there are usually 2 wires; above 21" there may be 3 wires.
Only you can decide if this deficiency is serious enough to avoid the use of a Trinitron based monitor. Some people never get used to the fine lines but many really like the generally high quality of Trinitron based displays and eventually totally ignore them.
Differences between Trinitron and Diamondtron CRTs
(From: Bill Nott (BNott@Bangate.compaq.com).)
Mitsubishi makes the Diamondtron under license from Sony - the subtle differences (according to Mitsubishi) are improvements in the electron gun design for spot uniformity over the CRT face. Also, for the time being, Mitsubishi has tried to introduce Diamondtron tubes in sizes which are not available as Trinitrons - to keep from directly competing, and (ostensibly) to address niches which other sizes can't address.
In order to properly evaluate a monitor, one must consider more than the tube alone - as many readers know, Trinitrons are finding their way into various manufacturer's sets, but they don't all perform the same. In todays market, it's quite possible to find a dot mask design which performs as well as (or better in some cases) the aperture grill design - IMHO every critical monitor purchase should be made by personally examining the monitor to be bought, under the intended application(s).
(BTW, all color tubes use 3 guns, including the Trinitron. Sony used to talk about a "unitized gun", but that only refers to the cathode structure. It's classical use of a misleading term to gain market awareness (looks like it works).)
(From: Someone who wishes to remain anonymous.)
I have found other differences between the Trinitron and Diamondtron tubes. Most noticeable is the grill pitch. The 21" Sony GDM-F520 is 0.22 mm. The 22" Mitsubishi (Cornerstone P1750) is 0.25 mm. For high resolution screens, this makes a difference.
I have also noticed that in a room full of Dell Trinitron monitors, no two monitors have the same color. This is not just a setup issue, the actual tubes have different colors when they are off. The darkness of the black changes.
My gut feeling is that the Dells use a Mitsubishi tube, and that the quality control is not up to Sony's. It is just a feeling, I have not done any research on this.
From what little I know, if you want the very best, you will have to pay for it, (or you get what you pay for).